The role of senescence and immortalization in carcinogenesis.

نویسنده

  • R R Reddel
چکیده

Normal somatic cells are able to divide only a limited number of times before they become senescent. The occurrence of intratumoral cell death and the need for clonal evolution mean that many more cell divisions are required for tumorigenesis than is possible unless cells breach the senescence proliferation barrier and become immortalized. Senescence may therefore be a major tumor suppressor mechanism. During the past decade the study of senescence and immortalization has entered the mainstream of cancer research. A major reason for the current interest in this subject is the observation that most cancers have an activated telomere maintenance mechanism, a marker of immortalization. It has also been found that some of the most common genetic changes known to occur in cancer have a key role in the immortalization process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumorogensis : The Dual Role of Telomerase

  Carcinogenesis is a multistep process characterized by the gradual accumulation of genetic changes that ultimately lead to cancer. These genetic mutations can impart limitless replicative potential to the cancer cells making them immortal. Telomeres are repeat nucleotide sequence TTAGGG that are present at the end of chromosomes. Its functions are to protect the chromosomal ends and to ensur...

متن کامل

Inactivation of Sag/Rbx2/Roc2 E3 Ubiquitin Ligase Triggers Senescence and Inhibits Kras-Induced Immortalization

Our recent study showed that SAG/RBX2 E3 ubiquitin ligase regulates apoptosis and vasculogenesis by promoting degradation of NOXA and NF1, and co-operates with Kras to promote lung tumorigenesis by activating NFκB and mTOR pathways via targeted degradation of tumor suppressive substrates including IκB, DEPTOR, p21 and p27. Here we investigated the role of Sag/Rbx2 E3 ligase in cellular senescen...

متن کامل

cGAS is essential for cellular senescence.

Cellular senescence is a natural barrier to tumorigenesis and it contributes to the antitumor effects of several therapies, including radiation and chemotherapeutic drugs. Senescence also plays an important role in aging, fibrosis, and tissue repair. The DNA damage response is a key event leading to senescence, which is characterized by the senescence-associated secretory phenotype (SASP) that ...

متن کامل

Telomeres conTrol cell aging

It has been well established that various mammalian cells demonstrate a limited growth capacity in culture referred to as cellular or replicative senescence. There is also some evidence in support of the idea that this is the basis for organismal aging. Recent studies have revealed the molecular mechanisms of telomere involvement in cell senescence, cell cycle control, genome (in)stability and ...

متن کامل

RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair.

Nuclear factor (NF)-kappaB is a positive regulator of tumour development and progression, but how it functions in normal cells leading to oncogenesis is not clear. As cellular senescence has proven to be an intrinsic tumour suppressor mechanism that cells must overcome to establish deregulated growth, we used primary fibroblasts to follow NF-kappaB function in cells transitioning from senescenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2000